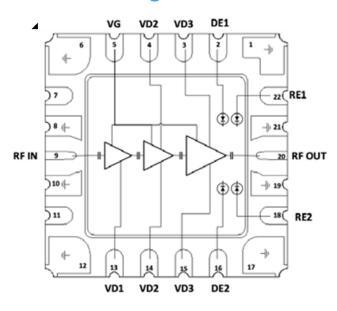


Product Datasheet

HPA11201721QF


Surface Mount 10 W GaN MMIC High Power Amplifier for K-band.

Overview

HPA11201721QF is a High Power MMIC Amplifier fabricated on Space Qualified 0.25 um GaN on SiC. This MMIC operates from 17-20.5 GHz and delivers >10 W saturated output power across the band, with power-added efficiency in excess of 25% and large-signal gain of 20 dB.

The part is offered in a 7x7 mm hermetically sealed surface mount ceramic package and is matched to $50~\Omega$ with integrated DC blocking capacitors on RF ports. The part incorporates an output power detector to assist with system integration and is well suited for satellite communications and point to point applications.

Functional Diagram

- Frequency range 17-20.5 GHz
- Power >10 W saturated
- Small signal gain 25 dB
- Large signal gain 20 dB
- Integrated power detector
- PAE: >25% at Pin=20 dBm
- Bias: VD=25 V, IDQ=300 mA, VG-3.6 V
- QFN dimensions 7x7 mm

- Satellite communications
- Radar
- Mobile communications
- 5G

	Available as		
	HPA11201721B	17-20.5 GHz bare die GaN HPA	
	HPA11201721BE	17-20.5 GHz bare die GaN HPA evaluation board	
	HPA11201721QF	17-20.5 GHz packaged GaN HPA	
HPA11201721QFE		17-20.5 GHz packaged GaN HPA evaluation board	
	SSPA11201721SS	17-20.5 GHz GaN solid state power amplifier	

HPA11201721QF Issue Date: 07/07/2023	DOC REV 1	Page 1 of 13
--------------------------------------	-----------	--------------

Product Datasheet

Electrical Specification Freq 17-20.5 GHz, T_a =25 °C V_d =25 V, Idq=300 mA, Zo=50 Ω

a u					
Parameter	Test Conditions	Min	Тур	High	Unit
Operational Frequency Range		17.0		20.5	(GHz)
Small Signal Gain	17-19 GHz 19-20.5 GHz		25 22		(dB)
Input Return Loss	17.5-20.5 GHz		10		(dB)
Output Return Loss	17.5-20.5 GHz		10		(dB)
Output Power at Saturation	17.5-19.5 GHz 19.5-20.5 GHz		42 40		(dBm)
Power Added Efficiency	Pin=20 dBm 17.5-19 GHz 19-20 GHz 20.5 GHz		33 25 20		(%)
Output Power Temperature Coefficient	19 GHz, Psat -40 to 85 °C		0.03		(dB/°C)

Absolute Maximum Ratings

Parameter	Rating
Drain Voltage (V _d)	30 V
Gate Voltage Range (V_g)	-8 to 0 V
Drain Current (I _d)	2.5 A
Power Dissipation (PDISS) 85 °C	44 W
Input Power (Pin)	23 dBm
Mounting Temperature (30 seconds)	260 °C
Storage Temperature	-55 to 150 °C
Junction Temperature	200 °C

Exceeding any one or combination of these limits may cause permanent damage to this device. Sustained operation near these survivability limits is not recommended.

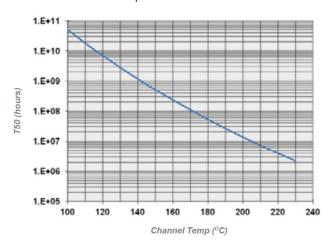
Recommended Operating Conditions

Parameter	Rating
Drain Voltage (V _d)	20-30 V
Gate Voltage Range (V _g)	-3.6 (TYP)
Drain Current, Quiesent (I _{dq})	300 mA
Junction Temperature	<200 °C

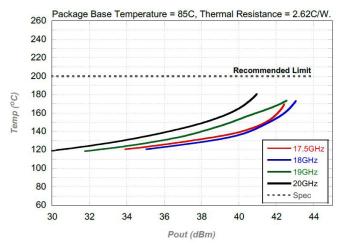
HPA11201721QF	Issue Date: 07/07/2023	DOC REV 1	Page 2 of 13
---------------	------------------------	-----------	--------------

Product Datasheet

Thermal Reliability Information

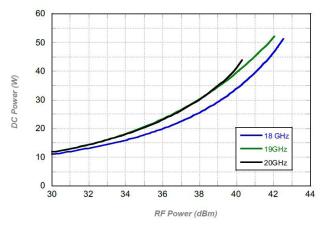

Parameter	Test Conditions	Value	Units
Thermal Resistance (θjc) ⁽¹⁾	Tbase= 85 °C, V_=25 V, I_=0-1.5 A	2.62	°C/W

Notes:


Thermal resistance measured using Raman Thermography on device channel referenced to back of package.

Median Time To Failure vs Channel Temperature

0.25 um GaN process

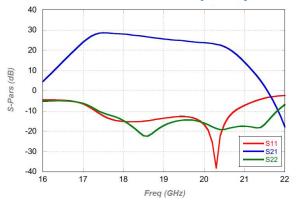


Channel Temperature vs Pout

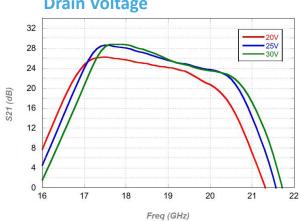
Power Consumption

DC power consumption vs output power

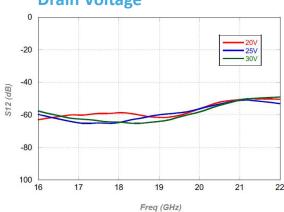
HPA11201721QF	Issue Date: 07/07/2023	DOC REV 1	Page 3 of 13
---------------	------------------------	-----------	--------------

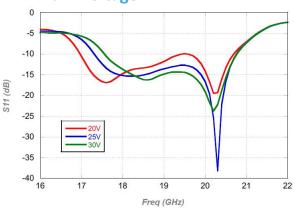


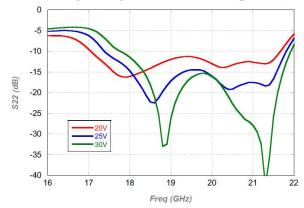
Product Datasheet


Small Signal Performance Curves

 $V_{\rm p}$ =25 V, $I_{\rm po}$ =300 mA, $V_{\rm g}$ ~-3.6 V typical, $T_{\rm A}$ =25 °C

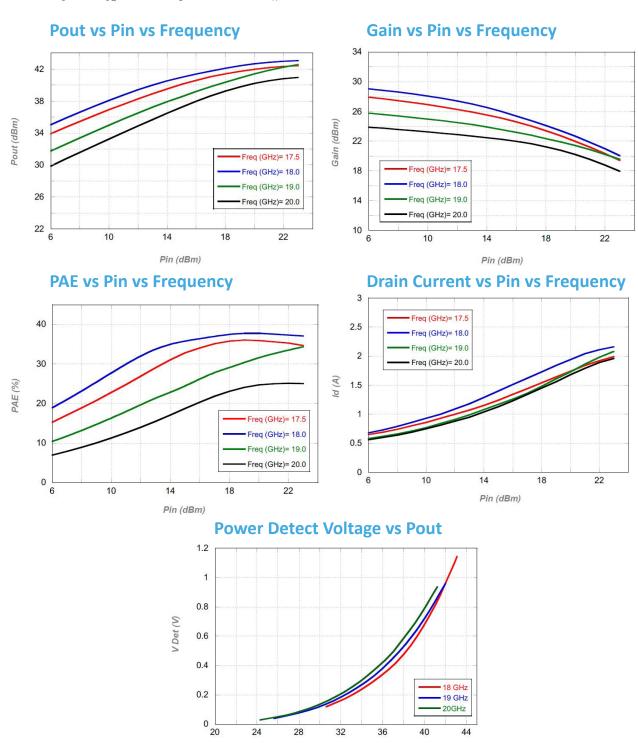

S-Parameters vs Frequency


Small Signal Gain vs Frequency vs Drain Voltage


Reverse Gain vs Frequency vs Drain Voltage

Input Return Loss vs Frequency vs Drain Voltage

Output Return Loss vs Frequency vs Drain Voltage



HPA11201721QF	Issue Date: 07/07/2023	DOC REV 1	Page 4 of 13
---------------	------------------------	-----------	--------------

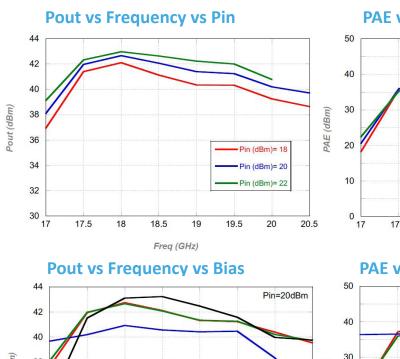
Product Datasheet

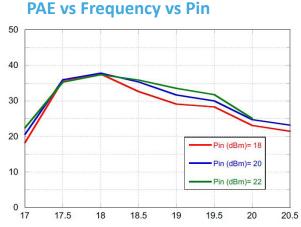
Large Signal Performance Curves $V_D = 25 \text{ V, } I_{DQ} = 300 \text{ mA, } V_G \sim -3.6 \text{ V typical, } T_A = 25 \text{ °C}$

HPA11201721QF Issue Date: 07/07/2023 DOC REV 1 Page 5 of 13

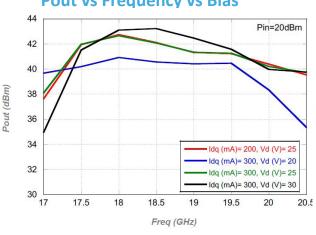
Pout (dBm)

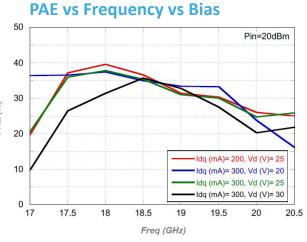
44

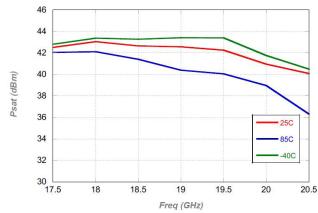

28



Product Datasheet

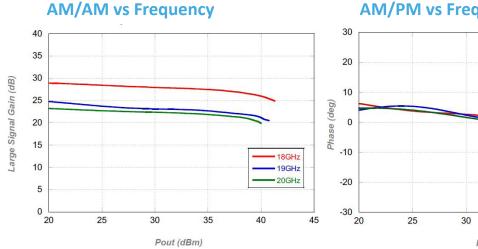

Large Signal Performance Curves


 $V_D = 25 \text{ V}$, $I_{DO} = 300 \text{ mA}$, $V_G \sim -3.6 \text{ V}$ typical, $T_A = 25 \, ^{\circ}\text{C}$

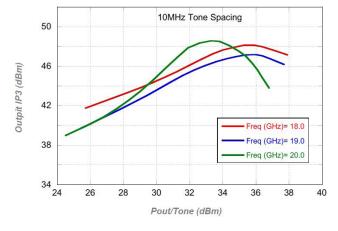


Freq (GHz)

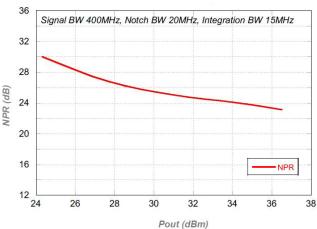
Saturated Power vs Frequency vs Temperature


HPA11201721QF Issue Date: 07/07/2023 DOC REV 1 Page 6 of 13

Product Datasheet


Linearity Performance Curves

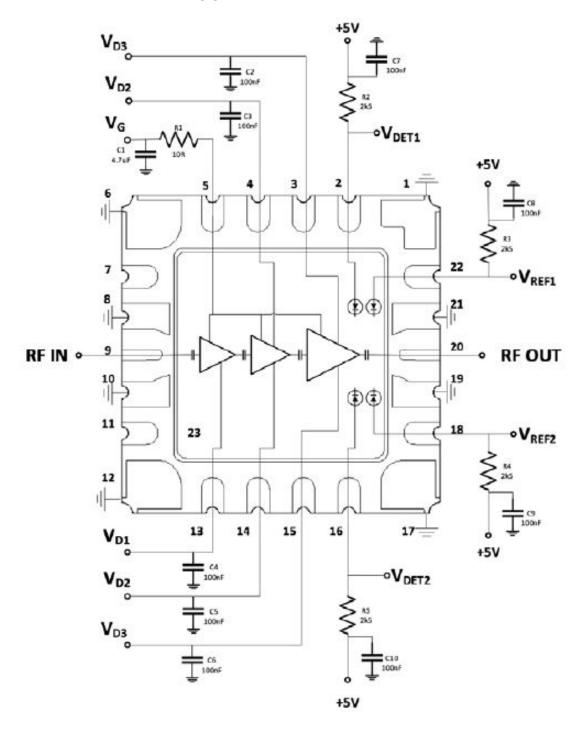
 $V_D = 25 \text{ V, I}_{DQ} = 300 \text{ mA, V}_G \sim -3.6 \text{ V typical, T}_A = 25 \,^{\circ}\text{C}$



AM/PM vs Frequency 30 20 10 10 -10 -20 -30 20 25 30 35 40 45 Pout (dBm)

Output IP3 vs Pout/Tone vs Frequency

Noise Power Ratio vs Average Pout at 19 GHz



HPA11201721QF	Issue Date: 07/07/2023	DOC REV 1	Page 7 of 13
---------------	------------------------	-----------	--------------

Product Datasheet

Recommended Application Circuit

HPA11201721QF	Issue Date: 07/07/2023	DOC REV 1	Page 8 of 13
IIIAIIZOI/ZIQI	13346 Date: 07/07/2023	DOCILLAT	1 480 0 01 13

Product Datasheet

Bill Of Materials

Part	Vale	Case Size
C1	4.7 uF	1608 (0603)
C2, C3, C4, C5. C6. C7, C8, C9 C10	100 nF	1608 (0603)
R1	10 Ohm	1005 (0402)
R2, R3, R4, R5	2.5k Ohm	1005 (0402)

Bias

Sequences

Bias Up Sequence	Bias Down Sequence
1. Set ID limit to 2.5 A, IG limit to 50 mA	1. Turn off RF supply
2. Apply -5 V to VG	2. Reduce VG to -5 V
3. Apply +25 V to VD; IDQ is ~0 mA	3. Set VD to 0 V
4. Adjust VG until IDQ = 300 mA (VG~ -3.6 V)	4. Turn off VD supply
5. Turn on RF supply	5. Turn off VG supply

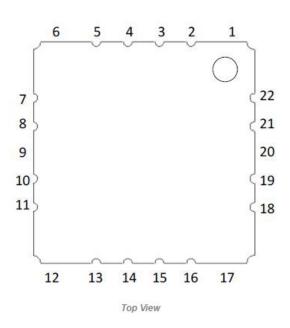
Arrangement

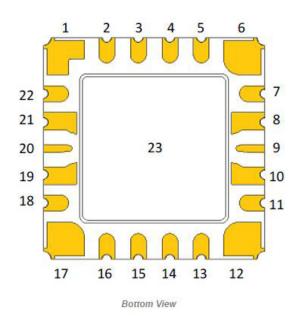
D2 and D3 must be biased from both sides.

Drain side capacitors should be 35 V minimum rating.

Bypass capacitors should be placed as close to the packaged device as possible.

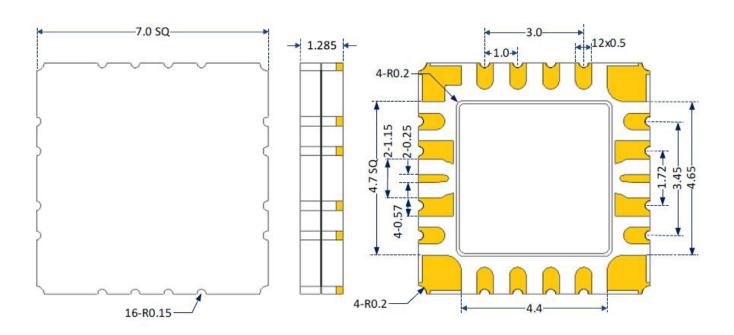
Detector Operation


HPA11201721QF includes power detectors on both sides of the device to facilitate integration into larger systems. The power detector requires an external 5V supply. For temperature compensation, the VDET and VREF outputs can be connected to a voltage comparator circuit, the output from which can be fed into an ADC or multimeter for the result.


HPA11201721QF	Issue Date: 07/07/2023	DOC REV 1	Page 9 of 13
---------------	------------------------	-----------	--------------

Product Datasheet

Pin Descriptions



Pad Number	Label	Description
1, 6, 8, 10, 12, 17, 19, 21, 23	GND	Ground
2, 16	VDET	Detector Diode Output Voltage
3, 15	V _D 3	Drain Voltage Stage 3
4, 14	V _D 2	Drain Voltage Stage 2
5	V _G	Gate Voltage (all stages)
7, 11	NC	No Connect
9	RFIN	RF Input, 50 Ω matched, DC Blocked
13	V _D 1	Drain Voltage Stage 1
18, 22	Vref	Reference Diode Output Voltage
20	RFоит	RF Output, 50 Ω matched, DC Blocked

HPA11201721QF Issue Date: 07/07/2023 DOC REV 1 Page 10 of 13		
--	--	--

Product Datasheet

Units: mm Tolerances ±0.15

Materials:

Package: Metal/Ceramic Lid: Metal/Ceramic

Melted Au-Sn preform is bonded on the plated surface Metal Finish: Ni PLATE + Au PLATE 1.0µmMIN.

HPA11201721QF Issue Date: 07/07/2023 DOC REV 1 Page 11 of 13
--

Product Datasheet

General Notes On Assembly

- 1. Clean the board or module with alcohol and allow it to fully dry.
- 2. Apply solder paste to each pin and heat achieve re-flow, being careful not to exceed the thermal budget.
- 3. After completing the soldering process, allow the devices to cool naturally for at least 3 minutes.
- 4. Avoid any mechanical stress or shock to the solder joints and devices during cooling,
- 5. Clean the assembly with alcohol.

Solderability

Compatible with the latest version of J-STD-020, Lead-free solder, 260 $^{\circ}$ C

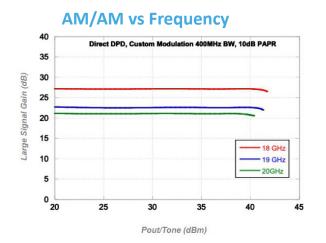
Handling Precautions

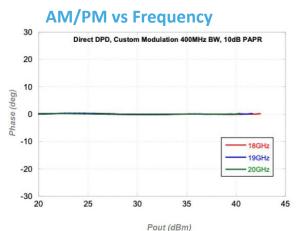
Parameter Rating ESD - Human Bodel Model (HBM) TBD

CAUTION! ESD – Sensitive Device These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

Application Notes

It is typical for GaN HPAs to exhibit a soft compression characteristic as can be seen on the AM/AM plot. This can have a detrimental impact on some modulation schemes particularly where a high PAPR is used. Modern digital techniques such as Digital Pre-Distortion (DPD) can be applied to an input signal to linearize the performance and achieve significant improvements on the EVM. By applying DPD to HPA11201721QF it is possible to linearize the HPA. The subsequent graphs of AM/AM and AM/PM show linear performance beyond 40dBm output power. The measurement uses Direct DPD over a signal bandwidth of 400 MHz and 10 dB PAPR.


HPA11201721QF	Issue Date: 07/07/2023	DOC REV 1	Page 12 of 13
---------------	------------------------	-----------	---------------



Product Datasheet

DPD Implementation Process Curves

 $V_{p} = 25 \text{ V}, I_{po} = 300 \text{ mA}, V_{g} \sim -3.6 \text{ V typical}, T_{A} = 25 ^{\circ}\text{C}$

Frequency	18	19	20	GHz
Signal Bandwidth	400	400	400	MHz
EVM	1.6	1.6	0.9	%
Pin (avg)	5.2	8.8	8.8	dBm
Pout (avg)	33.6	32.4	31	dBm
Pout (max)	42.1	42.0	40.6	dBm
Gain	28.4	23.6	22.2	dB
Crest Factor	10	10	10	dB

Contact Information

ReliaSat Offices

e: sales@reliasat.com

www.reliasat.com

HPA11201721QF	Issue Date: 07/07/2023	DOC REV 1	Page 13 of 13
---------------	------------------------	-----------	---------------